
GaSMaC
G r e a t  a l l - p u r p o s e

S e l f  M a n a g e d  C e l l

Kevin Twidle

Nov 2005

What is a
Self Managed Cell?

A set of hardware or software components 
forming an administrative domain that is 
able to function autonomously and thus 
capable of self-management. (AMUSE) 

Management services interact with each 
other through asynchronous events 
propagated through the system.

Able to interact with other SMCs and Web 
Services

SMCs do what?

General Purpose Object Management 
Environment

 SMC could represent

the resources available in a PDA

a body area network of physiological sensors and 
controllers

application components relating to a set of collaborating 
partners forming a virtual (e-Health) organisation 
spanning multiple countries. 

Managed Objects

A Managed Object is anything that 
conforms to the SMC interface rules

Four built-in types of Managed Objects

Domains, Policies, Templates, External

Managed Objects can accept commands 
from other Managed Objects



SMC Design:
MOs have names

Managed Object

Temp Monitor 1

Temp Monitor 2

Bed Alarm 1

Bed Alarm 2

Fred

SMC

SMC Design:
Domains

Managed Object

Temp Monitor 1

Temp Monitor 2

Bed Alarm 1

Bed Alarm 2

Fred

Bed Station 1 Bed Station 2

Robot

SMC

/ Bed Station 2 /

Temp Monitor
Bed Alarm

Bed Alarm

Temp Monitor

Events

Event: Notification with named values

Managed Objects create Events

Events are picked up by Policies

Policies

Policies are Event, Condition, Action rules

Action: Generate new Event(s) and/or give 
commands to one or more Managed Objects

Three basic policy types

Access Control Policy

Obligation Policy

Relationship Policy



Events and Policies

P

Managed Object

Temperature 

Monitor

Alarm

P

High Temp

Event

Low Temp

Event

Alarm On

Command

Alarm Off

Command

Event Propagation

Events bubble up the 
domain hierarchy

Policies are attached 
to Managed Objects

Fine grain control 
with simple Policies

Should Events be 
consumed?

P

Event Propagation
Event Bus Model

P

P

SMC

PP
Used to create a new Managed Object

Accepts a “create” command and returns a 
new instance of a Managed Object.

Importing new Managed Object code 
(currently only from a Jar or Java class 
file) produces a Template Managed Object.

Template
Managed Object



External
Managed Object

Importing a Managed Object from outside 
the SMC produces an External Managed 
Object.

EMO passes all commands to the remote 
invocation of the Managed Object.

Results are passed back as though the 
EMO had executed the command.

The Shell
(and a demo!)

Simple Unix-like* shell interface

Telnet to port 13570

Commands include: ls, cd, mkdom, rmdom, 
ln, dump, restore, read

XML is terminated by a period.
(American for .)

* Unix Version 6 - 1976

XML!
Basic Commands

SMC parses and executes XML

Few basic commands

IMPORT

USE

Made richer by the commands that 
Managed Objects obey

Managed Object 
Commands

Domain: Add, Link, Remove, List

Template Object: Create

Policy Object: Activate, Event, Condition, 
Action

Monitor: Threshold, Show, Hide

TickManager: Tick, Cancel



  <operation2>

   

  </operation2>

  <operation1 arg1="value1" arg2="value2" argn="...">

  </operation1>

<use name="/pathname/of/managed/object" arg1="value1">

</use>

      <oparg1arg1 arg1="value1" arg2="...">

        ...

      </oparg1arg1>

      <oparg1arg2 arg1="value1" arg2="...">

        ...

      </oparg1arg2>

      ...

    ...

    <oparg1 arg1="value1" arg2="value2" argn="...">

    </oparg1>

    <oparg2 arg1="value1" arg2="value2" argn="...">

     

    </oparg2>

 

Syntax for 
Operations

Add to a Domain

<use name="/common_printers">

  <add name="4thFloorPrinter">

    <use name="/department/printers/hp5040n"/>

  </add>

</use>

  <use name="/Template/policy">

   

  </use>

 

   <create type="obligation" event="/Event/repLT50" 

active="true">

   

   

   

    

   

   

    

     

      

     

 

   

   

   </create>

 

    <arg name="name"/>

    <arg name="value"/>

       <condition>

     

    </condition>

    

      <use name="/Policy/alarmedPDP">

       <isactive/>

      </use>

     <not>

     </not>

    <action>

    </action>

     <use name="/Policy/alarmedPDP" active="true"/>

<use name="/Policy">

 <add name="activateAlarmedPDP">

        </add></use>

Obligation Policy 

     <trace> Policy on event !name; !value; </trace>

TrustCom Demo

Part of demo given in Brussels

Shows Policies, Events, External Objects



Policy

Decision

Point

TrustCom Demo

PDD1 PDD1monitor

svc

PDP

SMC

An event is generated with the PDP’s informationA new Product Design Database is createdA policy adds the PDD to the /svc domainAn event is created saying a new service has been addedA policy gets the PDD’s PDP, puts it in the PDP domain

P

PP

Product

Design

database

Bootstrap Demo

SMC is just an empty Domain

Import Domain Template

Create Domain

Be Happy

To Do

Deletion semantics

External references with Dump and Restore

More external protocols

Freeze and Restart systems

General JAVA Swing Managed Object

Access Control Policy

Tutorial

Two Tutorials

XML Based

Java Based

See tutorial sheet



Programming a 
Managed Object

Create
Creates and initialises a managed object

Execute Setup
Reads the setup parameters

Execute
Executes operations on the managed object

Get State
Dumps current state for later restoration

Programming:
Create

  /** 

   * Creates and initialises a NullManagedObject 

   * 

   * @param xml 

   *          the initialisation parameters and commands 

   * @param result 

   *          the general result structure for errors and complex results 

   * @return the new managed object 

   */ 

  public static NullManagedObject create(TaggedElement xml, Result result) { 

    // May return one of several different sub-types. c.f. Policy 

    return new NullManagedObject(xml, result); 

  }

  /** 

   * creates an instance of this managed object 

   * 

   * @param xml 

   *          the initialisation parameters and commands 

   * @param result 

   *          the general result structure for errors and complex results 

   */ 

  public NullManagedObject(TaggedElement xml, Result result) { 

    super(); 

    execute(xml, result); 

  }  

Programming:
Execute Setup

 /* 

   * (non-Javadoc) 

   * 

   * @see org.trustcom.ManagedObject#executeSetup (com.twicom.qdparser.TaggedElement, 

   *      org.trustcom.comms.Result) 

   */ 

  @Override 

  public boolean executeSetup(TaggedElement xml, Result result) { 

    // This method is optional 

    // 

    // Check attributes 

    String att = xml.getAttribute("myattribute"); 

    if (att != null) { 

      // Do something 

    } 

    return true; // if we are happy else return false

  }

Programming:
Execute

   public boolean execute(TaggedElement xml, TaggedElement command, Result result) { 

    // Check the operations and execute them 

    /* This example will respond to: 

     * <create myattribute="pling"><op1 att1="value1"><op1op/></op1></create> 

     * or 

     * <use name="/some/name" optionalattribute="a1"><op2 att1="now"/></use> 

     */ 

    String operation = command.getName(); 

    if (operation.equals("op1")) { 

      // Cycle through the sub-elements of the command 

      for (Object o : command) { 

        if (o instanceof TaggedElement) { 

          TaggedElement subop = (TaggedElement)o; 

          // do something with subop, e.g. getAttribute 

        } 

      } 

    } 

    else if (operation.equals("op2")) { 

      // Do something for op2 

    } 

    else 

      // Indicate that we have not recognised the operation 

      return false; 

    // Indicate that we recognised the operation, no further processing needed

    return true; 

  } 



Programming:
Get State

 /* 

   * (non-Javadoc) 

   * 

   * @see org.trustcom.ManagedObject#getState(com.twicom.qdparser.TaggedElement) 

   */ 

  @Override 

  protected TaggedElement getState(TaggedElement state) { 

    // Code to sucessfully recreate this object at a later time 

    /* 

     * Any state written out here as attributes or operations MUST be acted upon

     * in executeSetup or execute 

     * 

     * This example will return 

     * 

     * <state myattribute="some value"><op2 att1="now"/></state> 

     */ 

    state.setAttribute("myattribute", "some value"); 

    TaggedElement op2 = new TaggedElement("op2"); 

    op2.setAttribute("att1", "now"); 

    state.add(op2); 

    return state; 

  } 


